CDC 3800 Computer Program to Calculate and Plot the Compressibility, Modulus of Compressibility, and Perpendicular Component of the Molecular Dipole Moment of Films Spread on Liquid Surfaces

LAURA A. HALPER

Laboratory for Chemical Physics

December 31, 1969

NAVAL RESEARCH LABORATORY Washington, D.C.

This document has been approved for public release and sale; its distribution is unlimited.

ABSTRACT

A program of interest to surface chemists has been developed for use on NRL's Control Data Corporation 3800 computer. The program reads film pressure, surface potential, and molecular area data. Tabulated values are returned for the compressibility, modulus of compressibility, and perpendicular component of the molecular dipole moment, along with corresponding molecular areas. Library routines for the Calcomp Plotter are used to plot the compressibility vs area/molecule, modulus of compressibility vs area/molecule, and perpendicular component of the molecular dipole moment vs area/molecule.

PROBLEM STATUS

This is an interim report; work is continuing on the problem.

AUTHORIZATION

NRL Problem C02-10 Project RR 001-01-43-4751

Manuscript submitted October 10, 1969.

CDC 3800 COMPUTER PROGRAM TO CALCULATE AND PLOT THE COMPRESSIBILITY, MODULUS OF COMPRESSIBILITY, AND PERPENDICULAR COMPONENT OF THE MOLECULAR DIPOLE MOMENT OF FILMS SPREAD ON LIQUID SURFACES

INTRODUCTION

Much of the data collected in the study of films spread on liquid surfaces is in the form of either film pressure or surface potentials at various molecular areas. The interpretation of these data may indicate conformation and orientation of molecules in the liquid surface.

This program, titled "Films," was developed to avoid the tedious slope calculations necessary for obtaining compressibility curves from film pressure data. Because surface potential, ΔV , data are often collected along with film pressure data, the program uses ΔV data to calculate molecular dipole moments perpendicular to the liquid surface.

GENERAL PROGRAM INFORMATION

Input is grouped either as set 1 data or set 2 data, depending on whether it is film pressure vs area/molecule (set 1) or surface potential vs area/molecule (set 2). For set 1 data, the program returns tabulations and plots of the compressibility and modulus of compressibility vs area/molecule. For set 2 data, the program returns perpendicular dipole vs area/molecule.

The program may be run with either or both sets present in the data deck. All set 1 data must be kept together, and all set 2 data must be kept together. Set 1 data need not precede set 2 data in the data deck. Input may be presented in either increasing or decreasing order by area, but successive data points must be presented successively in the data deck.

The program accepts up to and including 50 points for each film pressure run and 50 points for each surface potential run. The program accepts up to and including 99 runs for each set 1 and set 2.

Output quantities are calculated as follows:

Compressibility (i) in cm/dyne =
$$\frac{1}{A_{(i)}} \cdot \frac{A_{(i-1)} - A_{(i)}}{F_{(i)} - F_{(i-1)}}$$
,

where (i) refers to the *i*th data point, F is the film pressure in dynes/cm, and A is the molecular area in square angstroms/molecule.

Modulus
$$(i)$$
 of compressibility in dynes/cm = $\frac{1}{\text{compressibility}(i)}$

and

Perpendicular dipole (i) in Debye units = $\frac{\Delta V_{(i)} \; A_{(i)}}{4\pi} \times 3 \times 10^{-4}$,

where ΔV is surface potential in millivolts.

INPUT LIMITS

Area/molecule: 0.00 to 999.99 square angstroms/molecule

Film pressure: 0.00 to 99.99 dynes/cm

Surface potential: 0.00 to 999.99 millivolts

OUTPUT LIMITS

Compressibility: no limits on magnitude but three significant digits

Modulus of compressibility: same as for compressibility

Perpendicular dipole: 0.00 to 99.99 Debye units

DEFINITIONS OF TERMS IN PROGRAM

ITSETS—the total number of data sets in the data deck. ITSETS will equal 1 if only one type of data (either set 1 or set 2) is present. ITSETS will equal 2 if both sets 1 and 2 are present in the data deck.

ITSET — designation of data type: ITSET = 1 indicates film pressure-vs-area data and ITSET = 2 indicates surface potential-vs-area data

ITRUNS—total number of experimental trials for either set 1 or set 2 data. For example, if one film-pressure-vs-area curve was made of five different compounds, ITRUNS for set 1 would equal 5. If five film pressure-vs-area curves were made of one compound, ITRUNS for set 1 would equal 5. If three film pressure-vs-area curves were made of one compound and one film pressure-vs-area curve was made of two additional compounds, ITRUNS for set 1 would equal 5.

$$0 \le ITRUNS \le 99$$

IRUN - ordinal number of an experimental trial in either set 1 or set 2.

$$0 \le IRUN \le 99$$

NUM - number of data points in some particular IRUN.

$$0 \le NUM \le 50$$

Information about the Calcomp Plotter subroutines used in this program can be found in the following notes and memoranda:

- 1. Memorandum 7810-5:ABB:rmd:pj, September 18, 1967, Plotter Subroutine Package.
- 2. Memorandum 4500-31:DEG:rmd, August 24, 1967, 3800 Utility Program.

- 3. Memorandum 7810-33:GHR:rmd, November 22, 1967, Plotter Subroutine Package.
- 4. Memorandum 7810-121:GR:vjs, August 14, 1968, Changes in Plotter Subroutine Package.
- 5. NRL Computer Note 6, October 17, 1968, Plot Time Message for the Calcomp Plotter.
- 6. NRL Computer Note 10, December 17, 1968, Initialization for the 3800 Calcomp Plotter Package.
- 7. NRL Computer Note 25, June 12, 1969, New SCALE Subroutine to go on the 3800 System Library.

PROGRAM

```
PROGRAM FILMS
       DIMENSION AREA (50), PRESS(50), COMP(50), CMOD(50), DELV(50), PERMU(50)
      1, DELA(50), DELP(50), ARRAY(254)
       CALL PLOTS (ARRAY, 254,7)
        ICOUNT=0
       READ 100, ITSETS
        READ 101, ISET, ITRUNS
       GO TO (1,2) ISET
        DO 4 I=1, ITRUNS
       READ 102, IRUN, NUM, N, A, M, E
       NNUM=NUM-1
       DO 5 II=1,NLM
       AREA(II)=U,
      PRESS(II) = 0.
        CONTINUE
       DO 6 II=1.NLM
       READ 103, AREA(II), PRESS(II)
6
        CONTINUE
       DO 7 II=2,NUM
      DELA(II) = AREA(II-1) - AREA(II)
      DELP(II)=PRESS(II)-PRESS(II=1)
      COMP(II)=(1,/AREA(II))+(DELA(II)/DELP(II))
      CMOD(II)=1./COMP(II)
       CONTINUE
      PRINT 200, 15ET, IRUN, N, A, M, E
      DO 9 J=1, NUR
PRINT 201, PRESS(J), AREA(J)
       CONTINUE
      PRINT 202
      DO 10 J=2,NLM
      PRINT 203, COMP(J), CMOD(J), AREA(J)
10
        CONTINUE
      CALL SCALE (COMP(2), NNUM, 8, , CMIN, DC, 1, CTK)
      CALL AXIS(0, 0, 25HCGMPRESSIBILITY (CM/DYNE), 25,8,,90.,CTK,CMIN,
     1DC,5HE10,3)
      CALL SCALE (AREA(2), NNUM, 10, AMIN, DA, 1, ATK)
      CALL AXIS(0,,0,,28HAREA/MOLECULE (SQ,ANGSTROMS),-28,10,,0,,ATK,
     1AMIN,DA,4HF6,2)
       CALL PLOT (0, 10, 12)
      CALL LINE (AREA(2), CGMP(2), NNUM, 1, 2, 0, 1, 1)
      CALL PLOT(1, 10, ,3)
      CALL PLOT(1,10,,2)
CALL SYMBOL (1,,10,,0,21,21HCOMPRESSIBILITY CURVE,0,,21)
      CALL PLOT (15, , 0, , = 3)
      CALL SCALE (CMOD(2), NNUM, 8,, CMMIN, DCM, 1, CMTK)
      CALL AXIS(0,,0,,17HM0DULUS (DYNE/CM),17,8,,90,,CMTK,CMMIN,DCM,
```

```
15HE10,3)
      CALL ÁXIS (U.,O.,28HAREA/MOLECULE (SD.ANGSTROMS),=28,10.,0.,ATK,
     lamin, DA, 4HF6, 2)
       CALL PLOT (0, 0, 2)
       CALL LINE (AREA(2), CMOD(2), NNUM, 1, 1, 0, 1, 1)
      CALL PLOT (1, ,10,,3)
      CALL PLOT(1,10,,2)
CALL SYMBOL (1,,10,,0,21,26HMODULUS OF COMPRESSIBILITY,0,,26)
      CALL PLOT (13, 0,, +3)
        CONTINUE
       ICOUNT=ICOUNT+1
24
         IF (ITSETS ,EQ, 1) GO TO 500
       IF (ICOUNT ,E0,2) GO TO 500
       READ 101, ISET, ITRUNS
      GO TO 8
2
       D0 15 [=1,1TRUNS
      READ 102, IRUN, NUM, N.A.M.E
      DO 16 11=1, NUM
      AREA (II)=0.
      DELV(II)=0.
10
        CONTINUE
      DO 13 II=1. NUM
      READ 103, AREA(II), DELV(II)
      PERMU(II) = (LELV(II) + AREA(II) / (4, +3,14159)) +3, + (10, ++(=4))
15
         CONTINUE
      PRINT 204, ISET, IRUN, N, A, M, E
      DO 11 II=1, NUM
      PRINT 201, DELV(II), AREA(II)
        CONTINUE
11
      PRINT 205
      D0 12 11=1, NUM
      PRINT 206, PERMU(II), AREA(II)
        CONTINUE
12
      CALL SCALE (PERMU, NUM, B, , PMIN, DP, 1, PTK)
      CALL &XIS"(0,,0,,15HD1POLE (DEBYES),15,8,,90,,PTK,PMIN,DP,4HF4,2)
      CALL SCALE (AREA, NUM, 10, , AMIN, DA, 1, ATK)
      CALL AXIS (0,,0,,28HAREA/MOLECULE (SQ,ANGSTROMS),=28,10,,0,,ATK,
     1AMIN, DA, 4HF6, 2)
      CALL PLOT (0,,0,,2)
      CALL LINE (AREA, PERMU, NUM, 1,0,0,1,1)
CALL PLOT (1,,10,,3)
      CALL PLOT (1,,10,,2)
       CALL SYMBOL (1, 10, 0, 21, 20 HPERPENDICULAR DIPOLE, 0, ,20)
       CALL PLOT (13,,0,,=3)
15
        CONTINUE
      ICOUNT = ICOUNT+1
       G0 T0 20
       FORMAT (11)
140
101
       FORMAT (11,5X,12)
102
         FORMAT (12,5x,12,5x,A8,A8,A8,A8)
103
       FURMAT (16,2,5x, F6,2)
       FORMAT(/7/,27x,20HORIGINAL DATA: SET=,11,2x,4HRUN=,12,2x,4AB/
200
     138X,23HF]LM PRESSURE(DYNES/CM),5X,28HAREA/MOLECULE(SO, ANGSTROMS)/
201
        FORMAT (4/X, F6, 2, 25X, F6, 2)
242
       FORMAT (//,58x,15HCALBULATED DATA/17x, 24HCOMPRESSIBILITY(CM/DYNE
     1),5%,35HMUDULUS OF COMPRESSIBILITY(DYNE/CM),5%,28HAREA/MOLECULE(SQ
     2. ANGSTROMS)/)
243
         FORMAT (24X, E10, 3, 25x, E10, 3, 30X, F6, 2)
244
       FORMAT(///,28x,20HORIGINAL DATA: SET=,11,2x,4HRUN#,12,2x,4A8/
     137X,25HDELTA VOLTAGE(MILLIVOLTS),5X,28HAREA/MQLECULE(SQ, ANGSTROMS
       FORMAT (//,58x,15HCALCULATED DATA/35x, 28HPERPENDICULAR DIPOLE(DE
205
     18YES),5x.28HAREA/MOLECULE(SQ, ANGSTROMS)/)
246
       FORMAT (45x, F4, 2, 38x, F6, 2)
500
        CALL STUPPLUT
```

1

Security Classification				
DOCUMENT CONTROL DATA - R & D				
(Security classification of title, body of abstract and indexing annotation must be entered w. 1. ORIGINATING ACTIVITY (Corporate author) 22. REP			overall report is classified) CURITY CLASSIFICATION	
, ,		Unclassified		
Naval Research Laboratory Washington, D.C. 20390		2b. GROUP		
Washington, D.C. 20030				
3. REPORT TITLE COM CONTRIBUTED DESCRIPTION CALCULATE AND DESCRIPTION OF THE COMPRESSED TOTAL				
CDC 3800 COMPUTER PROGRAM TO CALCULATE AND PLOT THE COMPRESSIBILITY, MODULUS OF COMPRESSIBILITY, AND PERPENDICULAR COMPONENT OF THE				
MODULUS OF COMPRESSIBILITY, AND PERPENDICULAR COMPONENT OF THE MOLECULAR DIPOLE MOMENT OF FILMS SPREAD ON LIQUID SURFACES				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)				
Interim report; work is continuing on the problem.				
5. AUTHOR(S) (First name, middle initial, last name)				
Laura A. Halper				
December 31, 1969	78. TOTAL NO. O	FPAGES	7b. NO. OF REFS	
Ba. CONTRACT OR GRANT NO.	9a. ORIGINATOR"	REPORT NUME	(FP(S)	
NRL Problem C02-10				
b. PROJECT NO.	NRL Report 7003			
RR 001-01-43-4751				
с.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)		d	
. d				
10. DISTRIBUTION STATEMENT	<u> </u>			<u>. </u>
10. DISTRIBUTION STATEMENT				
This document has been approved for public release and sale; its distribution is unlimited.				
1				
11. SUPPLEMENTARY NOTES	12. SPONSORING		:	
		t of the Navy Naval Research),		
		navai Resea 1, D.C. 2036		:
13. ABSTRACT	Washington	1, 1.0. 2000		
A program of interest to surface chemists has been developed for use on NRL's Control				
Data Corporation 3800 computer. The program	n reads film j	pressure, s	urface potential, and	*,
molecular area data. Tabulated values are ret	urned for the	compressi	bility, modulus of	į
compressibility, and perpendicular component				
corresponding molecular areas. Library routi				3
the compressibility vs area/molecule, modulus of compressibility vs area/molecule, and perpendicular component of the molecular dipole moment vs area/molecule.				
perpendicular component of the more dual dipole moment vs area, more due.				
·				
i '				,
				•
·				
والمراجع	والمراقة المرافقات المراف			

Security Classification LINK A LINK B LINK C KEY WORDS WT ROLE wт ROLE ROLE WT Computers Surface properties
Compressibility
Modulus of compressibility
Dipole moment
Monomolecular films

DD FORM 1473 (BACK)

6

Security Classification